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Abstract
Finding a set of differential equations to model dynamical system is a difficult task present

in many branches of science and engineering. Recently, Rudy et al. 2017, Brunton, Proctor, and
Kutz 2016 and Quade et al. 2018 developed algorithms based on sparse regression techniques
to automate the discovery of equations compatible with the observed measurements using only
observed data. Unfortunately, their methods do not work in the presence of latent variables,
that is, when some of the variables of the dynamical system cannot be observed. In this paper
we propose a method hat can recover dynamical systems with latent variables from time series
measurements. The main idea of our method is to regress, using a Lasso type estimator, a
temporal derivative of the observable variables on a dictionary of functions that includes lower
order temporal derivatives of the observable variables. Extensive numerical studies show that our
method can recover useful representations of the dynamical system that generated the data even
when some variables are not observed. Moreover, being based on solving a convex optimization
problem, our method is much faster than competing approaches based on solving combinatorial
problems. Finally, we apply our methodology to a real data-set of temperature time series.

1 Introduction
Many branches of science are based on the study of dynamical systems. Examples include meteo-
rology, biology and physics. The usual way to model deterministic dynamical systems is by using
(partial) differential equations. Typically, differential equations models for a given dynamical system
are derived using a-priori insight into the problem at hand; then the model is validated using empirical
observations. In an era in which massive data-sets pertaining to different fields of science are widely
available, an interesting problem is whether it is possible for a useful differential equations model to
be learnt directly from data, without any major modelling effort required by the researcher.

Our goal in this paper is to develop a general methodology for building such differential equations
models in contexts in which not all relevant variables are observed, that is, in cases in which the
main variable of interest depends on other variables of which no measurements are available. As a
concrete example, consider the following problem. RTE, the electricity transmission system operator
of France, uses high level simulations of hourly temperature series to study the impact different
climate scenarios have on electricity consumption, and hence on the French electrical power grid. The
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underlying simulations are based on the Navier-Stokes equations and include as variables the wind
velocity, density, pressure, etc. Moreover, the resulting dynamic system is known to be chaotic, see
Kida, Yamada, and Ohkitani 1989.

In the case in which all relevant variables are observed, the problem of recovering the differential
equations that generated the observed data has been studied recently. The papers Brunton, Proctor,
and Kutz 2016, Rudy et al. 2017 and Quade et al. 2018, which motivated our research, developed an
approach that consists on linking the dynamical system discovery problem to a statistical regression
problem, making it scalable and easy to apply in different contexts. The main idea of their approach
is to consider a set of differential operators (possibly in both time and space if appropriate), discretize
them, for example by using finite differences, and then regress the outcome of interest on the discretized
differential operators. By solving the regression problem using an ad-hoc thresholded least-squares
algorithm, they are able to build sparse, interpretable models, that use mostly low order derivatives.
They explored the applicability of their method on simulated data, but only in situations in which all
the variables of the simulated models are observed. We provide further details of their approach in
Section 3. We highlight that in place of the thresholded least-squares algorithm, any other regularised
linear regression estimator could be used.

To accommodate the possibility of latent variables, we note that, for a large class of dynamical
systems, it is possible to reconstruct a trajectory (equivalent to the original one) given only one of
the model variables, using its delayed lags. See for instance Takens 1981. Based on this result, we
propose to augment the methodology developed in Brunton, Proctor, and Kutz 2016, Rudy et al.
2017 and Quade et al. 2018 by including higher order time derivatives, in order to tackle situations
in which not all relevant variables are observed. We estimate the coefficients of the dynamical system
using the Lasso estimator: an `1-regularised least squares regression estimator (Tibshirani 2011).
We choose to use the Lasso due to its simplicity, the abundance of theoretical guarantees on its
performance (Hastie, Tibshirani, and Wainwright 2015) and the availability of efficient algorithms to
solve the convex optimisation problem that defines the estimator. After estimating the regression
coefficients, we build a forecasting method by integrating the retrieved differential equation using the
Runge-Kutta-4 method. We call our methodology pdefind-latent.

Most related to our approach are the proposals of Bongard and Lipson 2007a and Mangiarotti et al.
2012, whose method, GPoMo, addresses the recovery problem via a combinatorial search between a
predefined set of polynomial functions of the observable variables. The method proceeds by iteratively
choosing a family of combination of terms that are able to better reproduce the phase diagram of the
system. Finally, it returns the set of models that were best. The authors also discuss the ability
of their algorithm to find equations able to capture the dynamics in the case in which only some
variables are observed. However, we will show that this approach tends to be slow and does not scale
well to large problems. Other approaches for learning dynamical systems from data are available in
the literature, such as those based on symbolic regression (Bongard and Lipson 2007b; Schmidt and
Lipson 2009), also have the drawback of being too computationally expensive.

We conduct extensive numerical experiments comparing the performance of the algorithm proposed
in this paper and the GPoMo methodology. Our results can be summarised as follows:

1. When all variables are observed, both methods have similar performance, with pdefind-latent
outperforming GPoMo.

2. When only one variable of the system is observed and no noise is added both methods have
similar performance, being able to recover dynamical systems with phase diagrams similar to
those of the ground truth. Again in this case the performance of pdefind-latent is slightly
superior.

3. The performance of both methods deteriorates when only noisy measurements are available.

4. Our method is orders of magnitude faster than GPoMo. This can be explained by the fact
that GPoMo does not solve a convex optimization problem, but rather conducts a combinatorial
search in the space of polynomial models.
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The rest of this paper is organised as follows. In Section 3 we describe our methodology in detail
and provide an overview of the GPoMo method. Section 4 presents the results of our experiments.
In particular, in Section 4.1, we compare the performance of these methods in recovering differential
equations using empirical data in the case in which all relevant variables are observed. In Section 4.2
we compare them in the harder case in which at least one relevant variable driving the dynamical
system is latent. We apply both methods to the RTE data in Section 4.3. Finally in Section 5 we
discuss future work and possible extensions.

2 Differential equations recovery as a linear regression prob-
lem

We consider dynamical systems represented by functions f1(x, y, z, t) . . . fH(x, y, z, t) satisfying a set
of differential equations of the form

Df = U(f ,Ef), (1)

where f = (f1, . . . , fH), D,E are differential operators in, possibly, both spatial (x, y, z) and temporal
variables (t) and U : RH → RH is an unknown map. Suppose we have a multidimensional set
of time series corresponding to observations of the dynamical system measured at regular intervals
(and possibly also over a regular spatial grid). More precisely suppose we have measurements on an
M ×M ×M × T grid, that is, we observe

fh(xi, yj , zk, tl) i, j, k ∈ {1, . . . ,M}, l ∈ {1, . . . , T}, h ∈ {1, . . . ,H}. (2)

An example of a dynamical system we will study in this paper is the classical Lorenz system (Lorenz
1963). The Lorenz system is a simplified model for atmospheric convection. The system is given by

df1(t)
dt

= α {f2(t)− f1(t)}

df2(t)
dt

= f1(t) {ρ− f3(t)} − f2(t) (3)

df3(t)
dt

= f1(t)f2(t)− βf3(t),

for constants α, β, ρ. This system can be written in the form (2) by taking f = (f1, f2, f3), D =
(d/dt, d/dt, d/dt) and U = (U1, U2, U3) where U1(v1, v2, v3) = α(v1−v2), U2(v1, v2, v3) = v1(ρ−v3)−v2
and U3(v1, v2, v3) = v1v2 − βv3. For certain values of the parameters α, β, ρ, the system is known to
have chaotic solutions.

Our objective is to find some system of differential equations that can explain the behaviour of
the measurements. As discussed in the introduction, we follow the approach outlined by Brunton,
Proctor, and Kutz 2016, Rudy et al. 2017 and Quade et al. 2018. Their approach works by choosing
a large dictionary of functions and regressing discretizations of

∂f1

∂t
, . . . ,

∂fH
∂t

on the dictionary. The dictionary in question can be formed, for example, by collecting polynomial
powers of fh, h = 1, . . . ,H, spatial derivatives of f1 . . . , fH and trigonometric functions of t. A
concrete simple example of such a dictionary in the case in which H = 1 is the following:

A =
{
x, y, z, x2, y2, z2,

∂f(x, y, z, t)
∂x

,
∂f(x, y, z, t)

∂y
,
∂f(x, y, z, z)

∂z
, sin(t)

}
.
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Of course in practice all derivatives are replaced by the corresponding finite differences taken from the
measurements represented in f . Further details on this point will be provided shortly. Having chosen
a dictionary, we let A = (A1, . . . , Ap) be the vector collecting all members of the dictionary.

Using the observations of the dynamical system, a regression model can be fitted to find the
combination of the elements of the dictionary of functions that adequately explains the behaviour of
∂f1
∂t , . . . ,

∂fH

∂t . That is, we look for a vector of regression coefficients c = (c1, . . . , cp) such that for all
h = 1, . . . ,H

∂fh(x, y, z, t)
∂t

≈
p∑
i=1

ci,h.Ai(x, y, z, t). (4)

In Brunton, Proctor, and Kutz 2016, Rudy et al. 2017 and Quade et al. 2018 the authors propose to
use an ad-hoc linear regression estimator based on iteratively thresholding the least-squares estimator.
Through extensive numerical experiments, they show that this methodology is able to learn systems
of partial differential equations that adequately model the dynamical system that generated the data.
Unfortunately, if some variables are latent, that is, if one is unable to measure at least one of f1, . . . , fH ,
the approach described above breaks down. Next, we describe a way of extending this methodology
to deal with the case in which some variables are latent.

2.1 Our proposal
It is known that, for a large class of dynamical systems, it is possible to reconstruct a trajectory
(equivalent to the original one) given only some of the model variables, using its delayed lags. See
Takens 1981 for a mathematical formulation. In the same direction, the differential embedding method
of Packard et al. 1980 deals with the problem of single time series reconstruction by adding higher
order derivatives. Based on this result, we propose to augment the methodology developed in Brunton,
Proctor, and Kutz 2016, Rudy et al. 2017 and Quade et al. 2018 by including higher order derivatives.

More precisely, our approach works by expanding the dictionary of functions by including higher
order derivatives of the observable variables. On top of including linear and non-linear functions of
x, y, z, t, polynomial powers and spatial derivatives of the observable fhs, we add higher order time
derivatives of the observable fhs. For example, if only f1 is latent, our dictionary might include

∂2f2

∂t2
, . . . ,

∂2fH
∂t2

.

A regression model can now be built to find combination of the elements of the dictionary of
functions that adequately explains the behaviour of some time derivative that is of higher order
than those included in the dictionary. That is, we look for vector of regression coefficients c∗h =
(ch,1, . . . , ch,p) such that, for an appropriately chosen n, and for all h such that fh is observable,

∂nfh(x, y, z, t)
∂tn

≈
p∑
i=1

c∗i,hAi(x, y, z, t). (5)

In our analysis the response variable is always taken as the time derivative of order n, where n is equal
to the order of the derivative of highest order in the dictionary, plus one.

The regression model has to be learned using the available data. This regression problem could
be solved in principle using least-squares. However, the ordinary least-squares regression estimator
is ill-defined in cases in which the number of predictor variables p is larger than the number of
observations. Since the analyst is usually uncertain about the number of elements in the dictionary
needed to adequately model the system of interest, the method used to solve the regression problem
at hand should allow for large number of predictor variables (possibly larger than the number of
observations) and automatically estimate sparse models, that is, generate accurate models that only
use a relatively small fraction of predictor variables. The Lasso regression technique (??) is perfectly
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suited for this task. The Lasso is a `1-regularized least-squares regression estimator, defined as follows.
For h = 1, . . . ,H such that fh is observable we let

c∗h = arg min
c∈Rp

∑
i,j,k,l

(
∂nfh(xi, yj , zk, tl)

∂tn
−

p∑
g=1

ch,gAg(xi, yj , zk, tl)
)2

+ λ‖ch‖1, (6)

where λ > 0 is a tuning constant, measuring the amount of regularization. It can be shown (Hastie,
Tibshirani, and Wainwright 2015) that the `1 penalty encourages sparse solutions and that the larger
λ > 0 the sparser the solution vector c∗h will be. In practice, λ is usually chosen by cross-validation.
Note that in (??), each regressor, that is, each element of the dictionary A, may vary at different
scales. In general, the Lasso will penalize more severely those variables that vary on a smaller scale,
which is undesirable. In order to avoid this, a z-score normalization is performed prior to the Lasso fit.
Incidentally, this results in better numerical stability. At the end, the normalization is undone, so that
the regression coefficients are in the original scale. Note that any other sparse regression technique
could have been used to estimate the coefficients. We prefer the Lasso due to its simplicity and the
wide availability of efficient algorithms to compute it. See for example Friedman et al. 2007.

The main assumption behind this methodology is that the dynamical system that generated the
data at hand can, in reality, be at least approximated using a sparse model. This hypothesis is known
to hold for several dynamical systems of interest in different fields of science. See Quade et al. 2018. If
the hypothesis holds, we can expect the Lasso estimates to select only a few elements of the dictionary,
namely, those that do a good job at explaining variations in the response variable (Hastie, Tibshirani,
and Wainwright 2015).

2.1.1 Implementation details

To form the dictionary of functions our method requires, we discretize all differential operators involved
in building the dictionary using finite differences. Since the discretised derivative

f(x, y, z, t+ dt)− f(x, y, z, t)
dt

makes it unclear to what time (t) we should assign the derivative we preferred central finite differences
calculated using the neighbouring function values

f(x, y, z, t+ dt)− f(x, y, z, t− dt)
2dt .

The analogous statement holds for spatial derivatives. Higher order derivatives are dealt with similarly.
In our analysis, the discretization parameters (dt, dx, dy, dz) were obtained from the minimum space
and time intervals given by the data.

In our implementation, the penalty constant λ is chosen by 20-fold cross-validation, seeking to
minimize the prediction mean square error.

The comparison with the GPoMo method was performed using the implementation of the method
available through th GPoMo function provided by the gPoM R package, using the following set-up,

out <- GPoMo(data=time_series, tin=time, dMax=2, nS=c(1, 1, 1), IstepMin =10,
IstepMax=15000, nPmin=5, nPmax=20, method=’rk4’).

The maximum polynomial degree dMax was set to 2 in the case of full information (that is, no latent
variables) and 3 when only one variable was observed.

For our method, we create the same dictionaries as the ones created with GPoMo, in the case of
full information it will be polynomials of order 2 of the variables,

{1, x, y, z, xy, xz, yz, x2, y2, z2},
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and in the case of latent variables, derivatives until order two and polynomials of order three

{1, x, ∂x
∂t
,
∂2x

∂t2
, x
∂x

∂t
,
∂x

∂t

∂2x

∂t2
, x2,

∂x

∂t

2
,
∂2x

∂t2

2

, . . . }.

3 Numerical experiments
To evaluate the performance of the proposed method and compare it with GPoMo algorithm we used
18 dynamical systems provided by the GPoM R package 1. For all these dynamical systems, we use
the exact same configuration (coefficients, time duration, etc.) used in the GPoMo package. All of
them have three variables {x, y, z}. Among the systems studied are the Lorenz system

dx

dt
= 10(y − x)

dy

dt
= x(28− z)− y (7)

dz

dt
= xy − 8

3z,

and the Rössler (1976) system (??), a chaotic system extensively used by Mangiarotti et al. 2012 to
show how their method succeds in finding addecuate models

dx

dt
= −z − y

dy

dt
= 0.52y + x (8)

dz

dt
= 2− 4z + xz, .

We evaluated the reconstruction power of our method and of GPoMo in two situations:

• when all relevant variables are observed.

• when only one variable of the system is observed.

Evaluating the equations found by the methods is difficult, due to the chaotic nature of the systems
considered and the lack of a ground truth equation to compare with in the case in which only one
variable is observed. This difficulty makes any metric that compares the prediction accuracy of a
method against the true series (like the mean square error) unreliable. However, visual inspection of
the estimated phase diagrams can reveal which models are reasonable or not, by noticing that the
trajectories of two systems that behave similarly will produce series that evolve in the same regions of
the phase diagram. This insight led us to propose the Wasserstein distance, also called earth-mover
distance, (Villani 2008), to compare the phase diagram obtained by each method to the true phase
diagram. Given a trajectory over the phase space we can collect all its points and think of them as
drawn from a certain distribution characteristic of the system that generated those data points. Let
ρtrue be that distribution and ρmethod the one obtained through proper integration of the equation
found by some method. The earth-mover distance emd(ρtrue, ρmethod) between ρtrue and ρmethod is
computed as the infimum over all couplings π(X,Y ) of ρtrue and ρmethod of E1/2

π

[
(X − Y )2]. We

evaluate the system recovered by a given method by computing

emd(ρtrue, ρmethod)
1Systems: Nosé-Hoover 1986, Genesio-Tesi 1992, Sprott-F, H, K, O, P, G, M, Q and S, Lorenz 1963 and 1984, Burke

and Shaw 1981, Rosseler 1976, Chlouverakis-Sprott 2004, Li 2007, Cord 2012
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where smaller values are preferable.
To study the impact noisy measurements have on pdefind-latent and on GPoMo, we introduced

various levels of random noise to the dynamical systems. More precisely, for each time point and each
variable in the system, we add to the true data a zero mean normal random variable with standard
deviation equal to kσ, where σ is the sample standard deviation of the variable in question and

k ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5},

so that larger values of k imply more noise is being added to the system. Of particular interest is to
understand how the performance of the methods deteriorates as the amount of noise added increases.

4 Results
4.1 Full information
When all the information is available and no noise is added, both methods are capable of recovering
the dynamical system. This can be seen in Figure 1 where the predictions using each of the methods
follow the true dynamics without much variation for 20 time units. Moreover, when looking at the
phase diagram, it is clear that both can reproduce the particular dynamics of each variable. In Figure
2, we can see that both methods fail at following the true series trend due to the added noise (k = 0.3).
GPoMo, in particular, is not able neither to reproduce the phase diagram, while the pdefind-latent
method succeeds in obtaining shapes similar to those of the original system.

After applying GPoMo and pdefind-latent to all the dynamical systems provided by GPoMo pack-
age (under different noise conditions) we calculated the emd distance over the resulting phase diagrams
and plotted the corresponding distributions to compare the performance of both methods. In the vi-
olin plots of Figure 3 we can see that both methods perform similarly with and without noise, with
pdefind-latent’s metric distribution nearer to zero meaning it’s phase portraits are more similar to
the true ones than the ones obtained with GPoMo. When noise is added the performance of both
methods progressively deteriorates as k increases.
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(a)

(b) (c) (d)

Figure 1: For the Rosseler system (a) the true time series (blue) with k = 0.1 level of noise, and
integrated time series using the models fitted with pdfind-latent (green), GPoMo (red). In (b, c, d)
the true phase diagram together with the ones obtained with both methods.
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