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NONHOMOGENEOUS EUCLIDEAN FIRST-PASSAGE PERCOLATION

AND DISTANCE LEARNING

P. GROISMAN, M. JONCKHEERE, AND F. SAPIENZA

Abstract. Consider an i.i.d. sample from an unknown density function supported on an

unknown manifold embedded in a high dimensional Euclidean space. We tackle the problem

of learning a distance between points, able to capture both the geometry of the manifold

and the underlying density. We prove the convergence of this microscopic distance, as

the sample size goes to infinity, to a macroscopic one that we call Fermat distance as it

minimizes a path functional, resembling Fermat principle in optics. The proof boils down

to the study of geodesics in Euclidean first-passage percolation for nonhomogeneous Poisson

point processes.

1. Introduction

The main motivation for this article is the following problem:

Let Qn = {q1, . . . , qn} be independent random points with common density
supported in a Riemannian manifold. Define a distance in Qn that captures
both the intrinsic structure of the manifold and the density.

This problem arises naturally in tasks like clustering or dimensionality reduction of high-
dimensional data, for which the notion of distance between points that is used is crucial. A
typical example is the problem of clustering images according to their visual content (say,
pictures of hand-writing digits). Even for low-resolution pictures, as low as 30 × 30 pixels,
the ambient space is already R

900. Two important considerations in this kind of problems
are:

• Curse of dimensionality. Euclidean or Minkowsky distance are not a good choice
because in high dimensional spaces every two points of a typical large set are at
similar distance [1].

• Data support. Real data usually lies in a manifold of much smaller dimension. They
can be described with a few degrees of freedom, each of these representing one intrinsic
variable that parametrize the manifold. In this context, the Euclidean distance can
be very different from the geodesic one, which is more adequate.

Nevertheless, considering the geodesic distance might still not be good enough since it
does not take into account the underlying density of the points given by f . For example, if
f is given by a mixture (with equal weights) of two one-dimensional Gaussian distributions
with means 0, 10 and variances 1 and 2, respectively, we would like the point 5 to be closer
to 10 than to 0. Of course, for a real case scenario the manifold and the density function f
are unknown, but for many learning tasks, it is certainly preferable to define a distance that
takes both into account.
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A fundamental step towards solving this problem was done by Tenenbaum, de Silva and
Landford with Isomap, [10]. This estimator was shown to achieve better results for dimen-
sionality reduction tasks by estimating the geodesic distance between points. However, it
is independent of the density f from which points are sampled and, as a consequence, it is
unable to give/use information about it. In [2, 3] the authors consider sample statistics that
capture the intrinsic dimension of the manifold and the intrinsic entropy. They take into
account both the manifold structure and the density function. Although their estimators
have a similar flavor to our proposal, they are different in the sense that they consider global
properties of the manifold while we are concerned with the distance between pairs of points.

In this article, we elaborate on a distance learning methodology introduced in [9], focusing
here mainly on the mathematical aspects of the problem. We define the Fermat distance, a
macroscopic quantity to measure distance between two points in a manifold in this context,
and the sample Fermat distance as a distance inferred from the data that estimates the
former one. Our contribution is then three-fold:

• Consistency. We show that a scaled version of the sample Fermat distance conver-
gences almost surely towards the macroscopic Fermat distance, both on connected
open sets of Euclidean space and on manifolds.

• Convergence of geodesics. We show that sample geodesics (minimizers of our
action functional) do converge towards macroscopic minimizers of the Fermat dis-
tance. The core of the proof is a bound from a above for the arc-length of sample
minimizers.

• Complexity. We show that with large probability the sample Fermat distance can
be computed in O(n2 log2 n) operations by restricting ourselves to “local” paths.

These fundamental mathematical properties shed light on the potential efficiency of the
sample Fermat distance for unsupervized learning tasks. For a more detailed discussion on
real applications to distance and manifold learning, clustering, dimensionality reduction and
comparison with other methods, computational aspects, etc. we refer to [9] (see also [2, 10] on
alternative proposals). A practical implementation of an algorithm computing our proposed
distance can be downloaded from https://github.com/facusapienza21/Fermat_distance.

2. Definitions and main results

Following [4, 5], let Q be a non-empty, locally finite, subset of Rd. We refer to the elements
q ∈ Q as particles. For any x ∈ R

d we denote q(x) the center of the Voronoi cell of x with
respect to Q. That is, q(x) is the particle closest to x in Euclidean distance. Given x, y ∈ R

d,
a path from x to y is a finite sequence of particles (q1, . . . , qk) with k ≥ 2, q1 = q(x) and

qk = q(y). The line segment from x to y is denoted xy and (q1, . . . , qk) denotes the polygonal

path of line segments q1q2, q2q3, . . . , qk−1qk. We also use |(q1, . . . , qk)| for its arc length, |x|
for the Euclidean norm of x and for a > 0, C ⊂ R

d, B(C, a) is the set given by

B(C, a) =
⋃

z∈C
B(z, a),

where B(z, a) is the open ball centered at z with radius a with respect to the Euclidean
norm. We can now define the sample Fermat distance.

https://github.com/facusapienza21/Fermat_distance
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Definition 2.1. For α ≥ 1 and x, y ∈ R
d,

DQ,α(x, y) = inf

{

k−1
∑

j=1

|qj+1 − qj |α : (q1, . . . , qk) is a path from x to y, k ≥ 1

}

. (2.1)

Notice that DQ,α satisfies the triangular inequality and defines a metric over Q and a
pseudometric over R

d. When not strictly necessary we will drop the dependence of all
these quantities on α and Q. This distance was considered previously in [4, 5] to construct
continuous models of first-passage percolation. We will focus on (but not restrict ourselves
to) the case in which Q is a Poisson Point Process (PPP) although the intensity function will
be different in different instances. We assume that all the processes involved are constructed
in a probability space (Ω,F ,P). All the “almost sure” statements are with respect to P. We
write Q ∼ Poisson(S, g) when Q is a PPP on S with intensity function g with respect to
volume element on S. We include here the possibility that S is a manifold with dimension
smaller than d.

Notice that for α = 1 this distance coincides with the Euclidean distance but for α > 1
large jumps are discouraged and this results in a different distance that penalizes paths in
which points are far away to each other. We also call rQ,α(x, y) the unique path along which
DQ,α(x, y) is achieved when it is defined (that is the case a.s. if, for example, x, y are
deterministic and Q is a PPP, [4]).

Next we define a macroscopic version of the sample Fermat distance that we simply call
the Fermat distance or macroscopic Fermat distance as follows.

Definition 2.2. For a continuous and positive function f , β ≥ 0 and x, y ∈ S we define
Fermat distance Df,β(x, y) as

Tf,β(γ) =

ˆ

γ

f−β, Df,β(x, y) = inf
γ
Tf,β(γ). (2.2)

Here the infimum is taken over all continuous and rectifiable paths γ contained in S̄, the
closure of S, that start at x and end at y; and the integral is understood with respect to
arc-length given by Euclidean distance.

We will omit the dependence on β and f when not strictly necessary. This definition
coincides with Fermat Principle in optics for the path followed by light in a non-homogeneous
media when the refractive index is given by f−β. We will call the minimizer γ⋆ in (2.2) a
macroscopic f -geodesic between x and y. Observe that f -geodesics are likely to lie in regions
where f is large.

2.1. Consistency. Our main result consists in proving that the sample Fermat distance
when appropriately scaled converges to the Fermat distance. In other words, the scaled
sample Fermat distance is a consistent estimator of the macroscopic one.

Theorem 2.3. Let S ⊂ R
d be an open connected set with C1 (or empty) boundary. Let

f : S̄ → [mf ,Mf ] be a continuous intensity function. Assume mf > 0. For each n ∈ N let
Qn ∼ Poisson(S, nf). Given x, y ∈ S and ε > 0, there exist constants µ, c1, c2 and n0 such
that

P
(
∣

∣nβDQn,α(x, y)− µDf,β(x, y)
∣

∣ > ε
)

≤ e− c1 nc2
, (2.3)
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for β = (α− 1)/d and every n ≥ n0. In particular

lim
n→∞

nβDQn,α(x, y) = µDf,β(x, y) almost surely.

The Poisson assumption can be replaced by assuming Q is an i.i.d. sample with density
f using a simple large deviations estimate.

Corollary 2.4. The same result holds if we replace Qn by a set of n independent points with
common density f .

Remark 2.5. If S is not connected and x and y belong to different connected components
of S̄, we have Df,β(x, y) = lim inf nβDQn(x, y) = ∞ a.s. If x, y belong to the same connected
component, we can restrict ourselves to this component. So, the connectedness assumption
can be dropped and is assumed for simplicity.

If the Euclidean norm in (2.1) is replaced by another distance, similar results can be
obtained with the line integrals with respect to arc length replaced by line integrals with
respect to the distance involved. It could be interesting to explore other choices.

The C1 smoothness assumption for the boundary of S is not really necessary either and
can be relaxed up to some point. For instance, it is enough (but actually not necessary) to
suppose S to be locally convex at points of the boundary where it is not C1. Also, if we allow
mf = 0 (which can be done with a little extra work) no regularity assumptions are needed
at boundary points where f vanishes. In fact, the only problem one needs to deal with is the
case in which the macroscopic geodesic intersects the boundary. This case can be avoided
in several ways, but it can certainly happen if S is not convex and f is not negligible at the
boundary. We assume in the sequel the stronger C1 assumption to simplify the exposition.

As a consequence of Theorem 2.3 we obtain a similar result for points supported on a
lower dimensional manifold. We will say that M is an isometric d-dimensional C1 manifold
embedded in R

D if there exists S ⊂ R
d an open connected set and φ : S̄ → R

D an isometric
transformation such that φ(S̄) = M. As we mentioned before, in real applications we expect
d ≪ D, but this is not required.

Theorem 2.6. Assume M is an isometric C1 d-dimensional manifold embedded in R
D

and f : M → R+ is a continuous probability density function. Let Qn = {q1, . . . , qn} be
independent random points with common density f . Then, for α > 1 and x, y ∈ M we have

lim
n→∞

nβDQn,α(x, y) = µDf,β(x, y) almost surely. (2.4)

Here β = (α − 1)/d and µ is a constant depending only on α and d; the minimization is
carried over all rectifiable curves γ ⊂ M that start at x and end at y.

Remark 2.7. Notice that the scaling factor β = (α−1)/d depends on the intrinsic dimension
of the manifold, instead of the dimension D of the ambient space.

2.2. Geodesics. Once, we have the convergence of the distances, it is natural to ask for the
convergence of the geodesics. An important step towards this result is to prove that sample
geodesic arc length is bounded. This result is not straightforward and follows from geometric
arguments combined with large deviations.
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Proposition 2.8. Let S ⊂ R
d be a bounded connected open set, Qn ∼ Poisson(S, nf) and

δ > 0. Then, there exists positive constants ℓ, c3 and n0, with c3(δ) depending on δ, such
that if x, y ∈ S, |x− y| > δ, then for all n > n0

P

(

|rQn,α(x, y)| > ℓ
)

≤ exp (− c3 n
c2) . (2.5)

As a consequence, we have

lim sup
n→∞

|rQn,α(x, y)| ≤ ℓ almost surely. (2.6)

The constant c2 is the same as in Theorem 2.3. Having obtained this upper bound on the
arc length of geodesics, we can show that under suitable conditions the microscopic geodesics
converge to the macroscopic one.

Corollary 2.9. If there is a unique macroscopic f -geodesic γ⋆, then rQn,α(x, y) converges
uniformly to γ⋆ almost surely.

2.3. Complexity. Finally, we turn our attention to the computability of the sample Fermat
distance. Computing the minimum in (2.1) for every two points in Qn requires a search in a
discrete set of size larger than n!. By means of Floyd-Warshall algorithm, this task can be
done in O(n3) operations. We prove that we can restrict the search to paths in which each
particle qi of the path is a k−th nearest neighbor of qi−1 for k ≈ logn. Based on this fact,
Dijkstra algorithm requires O(n2 log2 n) operations to compute the distances between every
two points in the sample.

Given k ≥ 1 and q ∈ Qn, the k-th nearest neighbor of q, denoted by q(k), is defined by

q(1) = argminq′∈Qn\{q} |q′ − q|, q(k) = argminq′∈Qn\{q,q(1),...,q(k−1)} |q′ − q| for k > 1.

We use the lexicographic order to break ties. Also denote Nk(z) = {q(1), q(2), . . . , q(k)} the
set of k-nearest neighbors of q. We can now define the restricted sample Fermat distance as
follows:

Definition 2.10. For x, y ∈ Qn, α ≥ 1 and k ∈ N, we define

Dk
Qn

(x, y) = min

{

K−1
∑

i=1

|qi+1 − qi|α : q1 = x, qK = y, qi+1 ∈ Nk(qi), 1 ≤ i ≤ K − 1

}

. (2.7)

We have the following quantitative approximation result:

Proposition 2.11. In the setting of Theorem 2.3, given ε > 0, there exist positive constants
c4, c5 such that if k > c4 log(n/ε) + c5 we have

P
(

Dk
Qn

(x, y) = DQn(x, y)
)

> 1− ε. (2.8)

In other words, with probability at least 1 − ε, the minimizing path (q1, . . . , qkn) verifies
qi+1 ∈ Nk(qi) for every i = 1, . . . , K − 1.

While the previous result is certainly an improvement, it might still be unsatisfactory for
large data sets. However, if n is very large, it is possible to appeal to greedy implementations
based on landmarks. Given Qn, let us consider a subset of landmarks Q̃ ⊂ Qn with |Q̃| = m
andm ≪ n. Then, we compute the minimum path between each of them landmarks and the
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rest of the particles in Qn using Dijkstra’s algorithm on the k-nearest neighbor graph. This
can be done in O(mkn log n) operations. Then, we can bound the exact Fermat distance
between any two points q, q′ ∈ Qn by

max
q̃∈Q̃

|DQn(q, q̃)−DQn(q
′, q̃)| ≤ DQn(q, q

′) ≤ min
q̃∈Q̃

(DQn(q, q̃) +DQn(q
′, q̃)) ,

see [8]. Notice that the bound from above holds with equality if there is a landmark q̃ ∈ Q̃ in
the shortest path between q and q′. Due to this fact, an interesting and important problem
is to choose a good set of landmarks, [8].

2.4. Organization of the paper. The rest of the article is organized as follows. In Section
3, we prove several lemmas that lead to the proof of the consistency, Theorem 2.3. Corollary
2.4 can be easily obtained by means of a large deviations principle for Poisson random
variables and is left to the reader. In Section 4 we consider the original problem, i.e., the
case in which Qn is a random set of independent points with common density f supported
on a manifold and we prove Theorem 2.6. We then obtain Corollary 2.9 as a consequence of
Theorem 2.3 after proving that the arc length of microscopic geodesics is bounded, which is
done in Section 5. Section 6 deals with computational considerations. We show that with
large probability (DQn(q, q

′))q,q′∈Qn can be computed in O(n2 log2 n) operations by restricting
ourselves to “local” paths.

3. Nonhomogeneous PPP

We begin by proving the almost sure convergence of nβDQn(x, y) to Fermat distance
between x and y for nonhomogeneous PPP stated in Theorem 2.3. The proof will be split
in several lemmas. The first step consists in considering homogeneous PPP in a convex set
S ⊂ R

d. This case has actually been treated in [4, 5] where the following is proved.

Proposition 3.1. [4, Lemma 3 and Lemma 4], [5, Theorem 2.2] Assume S ⊂ R
d is an open

convex set and let Qn ∼ Poisson(S, n). There exists 0 < µ < ∞ such that for any x, y ∈ S
we have

lim
n→∞

nβDQn(x, y) = µ|x− y|, almost surely. (3.1)

Moreover, given δ > 0 there exist positive constants λ, c2, c6, c7, with c7 depending on δ, such
that if |x− y| > δ then

P
(
∣

∣nβDQn(x, y)− µ|x− y|
∣

∣ ≥ λn−1/3d
)

≤ c6 exp (− c7 n
c2) . (3.2)

for every n ≥ 1.

The results of [4, 5] are proved in fact for the case in which Qn is replaced by an intensity
one PPP and instead of taking n → ∞, the authors consider the limit as |y| → ∞. The adap-
tation of those results to our setting to get 3.1 is straightforward by considering the rescaled
process n1/dQn and using [5, Theorem 2.4] to show that if we have Q̃n ∼ Poisson(S, n),
Q̃n ∼ Poisson(Rd, n) and x, y ∈ S, then

P
(

DQn(x, y) 6= DQ̃n
(x, y)

)

≤ c6 exp (− c7 n
c2) .

By means of Proposition 3.1 we can obtain rough bounds for the nonhomogeneous case.
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Lemma 3.2. Let S ⊂ R
d be an open bounded connected set with C1 (or empty) boundary

and f : S → [mf ,Mf ] measurable. Let δ > 0 and x, y ⊂ S with |x − y| > δ and Qn ∼
Poisson(S, nf). Then, for all ε > 0 there exist n0 = n0(ε) and a positive constants c8 = c8(δ)
such that for all n > n0,

P

(

nβDQn(x, y) ≤ µM−β
f |x− y| − ε

)

≤ exp (− c8(mfn)
c2) , (3.3)

P

(

nβDQn(x, y) ≥ µm−β
f D0(x, y) + ε

)

≤ exp (− c8(Mfn)
c2) . (3.4)

Here D0(x, y) := Df,0(x, y) is the geodesic distance between x and y defined in accordance
with (2.2).

Proof. Denote co(S) the convex hull of S. Given two locally finite configurations Q ⊂ Q̃, we
have DQ̃(x, y) ≤ DQ(x, y). Enlarge the probability space to consider two homogeneous PPP

Q−
n ∼ Poisson(S, nmf ) and Q+

n ∼ Poisson(co(S), nMf ), coupled with Qn (see for instance
[6, Section 3.2.2]) to guarantee that Q−

n ⊂ Qn ⊂ Q+
n . Then

P

(

nβDQn(x, y) ≤ µM−β
f |x− y| − ε

)

≤ P

(

nβDQ+
n
(x, y) ≤ µM−β

f |x− y| − ε

)

Choosing n0 such that ε > λ(n0mf )
−1/3d, by means of Proposition 3.1 we get(3.3). To prove

(3.4) we proceed similarly, but we need to be more careful. Since S is open and connected,

we can consider a polygonal γ = (x0, . . . , xk) ⊂ S from x to y with

|(x0, . . . , xk)| < D0(x, y) +
mβ

f ε

2µ
and B

(

xi+1 + xi

2
, |xi+1 − xi|

)

⊂ S,

for every 0 ≤ i ≤ k − 1. We claim that k can be taken uniformly bounded for every two
points x, y ∈ S. To see that we proceed by contradiction. Fix one point z ∈ S and assume
there is a sequence of points zn ∈ S with the property that any polygonal from z to zn
contained in S is composed by at least n line segments. Since S̄ si compact we can extract a
convergent subsequence znj

→ z⋆ ∈ S̄. If z⋆ ∈ S, there is ball centered at z⋆ contained in S
with points zn for large n. Then we can easily construct polygonals contained in S from z to
zn with a bounded number of line segments, a contradiction. Then it should hold z⋆ ∈ ∂S
but since ∂S is C1 we can proceed in the same way to obtain again a contradiction.

Denote

Qi
n = Q−

n ∩B

(

xi+1 + xi

2
, |xi+1 − xi|

)

.

Proceeding as before, we get for every i,

P

(

nβDQn(xi, xi+1) ≥ µm−β
f |xi+1 − xi|+ ε

)

≤ P

(

nβDQi
n
(xi, xi+1) ≥ µm−β

f |xi+1 − xi|+ ε

)

.

(3.5)
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Then,

P

(

nβDQn(x, y) ≥ µm−β
f D0(x, y) + ε

)

≤ P

(

nβ
k
∑

i=0

DQn(xi, xi+1) ≥
µ

mβ
f

|(x0, . . . , xk)|+
ε

2

)

≤
k
∑

i=0

P

(

nβDQi
n
(xi, xi+1) ≥ µm−β

f |xi+1 − xi|+
ε

2k

)

.

Using again Proposition 3.1 we get (3.4). �

The second step is to show that the distance between consecutive particles in the optimal
path vanishes as n → ∞.

Lemma 3.3. In the setting of Theorem 2.3, let (q1, . . . , qkn) be the minimizing path. Given
δ > 0, there exists a positive constant c9 such that

P

(

max
i<kn

|qi − qi+1| > δ

)

≤ exp (− c9 n) . (3.6)

Proof. For any two consecutive points qi, qi+1 in the optimal path we have

Qn ∩ {z ∈ S : |z − qi+1|α + |z − qi|α < |qi+1 − qi|α} = ∅. (3.7)

Observe that we can choose κ1 depending only on α and d such that the region {z ∈ S :
|z − qi+1|α + |z − qi|α < |qi+1 − qi|α} contains a cube of edge size κ1|qi+1 − qi|. Consider a
family C of cubes of edge size κ1δ/2 with vertices in κ1δ/2Z

d.
Notice that the number of cubes in this family that intersect S is finite. Each of these

cubes has no particles with probability bounded by exp(− c10 n). If maxi<kn |qi − qi+1| > δ,
then there is a cube in S with side κ1δ. Such a cube must contain a cube in C. �

Next, we prove that in order to find the optimal path between x and y we can restrict
ourselves to certain neighborhoods of any path γxy ⊂ S that starts at x and ends at y. This
fact will be used both for points that are close to each other as well as for points that are at
a large distance. Denote, mγ

f = inf{f(z) : z ∈ B(x, 2|γ|)}.
Lemma 3.4. In the setting of Theorem 2.3, given δ > 0, there exist positive constants c11
and n0 such that for every x, y ∈ S with |x− y| > δ and a path γ ⊂ S from x to y we have,

P

(

DQn(x, y) 6= DQn∩B(x,ã|γ|)(x, y)

)

≤ exp (− c11 n
c2) , (3.8)

for every n > n0 and ã = 3
(

Mf/m
γ
f

)β
. In particular,

(i) if S is bounded

P

(

DQn(x, y) 6= DQn∩B(x,a|xy|)(x, y)

)

≤ exp (− c11 n
c2) . (3.9)

with

a = ã sup
|z−w|≥δ

D0(z, w)

|z − w| < ∞.
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(ii) if xy ⊂ S, we have

P

(

DQn(x, y) 6= DQn∩B(x,ã|xy|)(x, y)

)

≤ exp (− c11 n
c2) . (3.10)

Proof. Let z 6∈ B(x, a|γ|) ∩ S. Given δ1 < µ(mγ
f )

−β|γ|/3, consider the events

Az
n =

{

nβDQn(x, z) ≤ nβDQn(x, y) + δ1

}

Ez
n =

{

nβDQn(x, z) ≥ µM−β
f |x− z| − δ1

}

Fn =

{

nβDQn∩B(x,2|γ|)(x, y) ≤ µ(mγ
f )

−β|γ|+ δ1

}

.

In Az
n ∩ Ez

n ∩ Fn we get

µM−β
f |x− z| ≤ nβDQn(x, z) + δ1 ≤ nβDQn(x, y) + 2δ1

≤ nβDQn∩B(x,2|γ|)(x, y) + 2δ1 ≤ µ(mγ
f)

−β|γ|+ 3δ1

< 2µ(mγ
f)

−β|γ|.

Since z 6∈ B(x, a|γ|) implies |x− z| > a|γ| and a = 3
(

Mf/m
γ
f

)β
, we have Az

n ∩Ez
n ∩ Fn = ∅.

By Lemma 3.2 there exist c8(δ), n0(δ) independent of z and a positive constant c2 such that

P(Az
n) ≤ P((Ez

n)
c) + P(F c

n) ≤ 2 exp (− c8(mfn)
c2) for all n > n0.

Assume DQn(x, y) < DQn∩B(x,a|γ|)(x, y) and {maxi<kn |qi − qi+1| < a|γ|}. Then there is a
particle q ∈ Qn ∩ B(x, a|γ|)c ∩ B(x, 2a|γ|) with

DQn(x, y) = DQn(x, q) +DQn(q, y) ≥ DQn(x, q).

Consider the following covering

S ∩ (B(x, 2a|γ|)rB(x, a|γ|)) ⊂
⋃

v∈V
B
(

v, δ0n
−1/d

)

.

Here V ⊂ S r B(x, a|γ|) is a finite set of points that can be chosen in such a way that
#V ≤ κ2n for some constant κ2 and (2δ0)

α < δ1. Let vq ∈ V be such that q ∈ B
(

vq, δ0n
−1/d

)

.
If q is the closest particle in Qn to vq, then DQn(q, vq) = 0. If that is not the case, there
is another particle in B

(

vq, δ0n
−1/d

)

and consequently we have DQn(q, vq) < (2δ0n
−1/d)α.

From triangular inequality we get

nβDQn(x, q) ≥ nβDQn(x, vq)− nβDQn(q, vq) ≥ nβDQn(x, vq)− δ1n
−α/d ≥ nβDQn(x, vq)− δ1.
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Hence

P

(

DQn(x, y) 6=DQn∩B(x,a|γ|)(x, y) , max
i<kn

|qi − qi+1| < a|γ|
)

≤ P

(

∃v ∈ V : nβDQn(x, y) ≥ nβDQn(x, v)− δ1

)

≤
∑

v∈V
P ((Av

n)
c)

≤ 2κ2n exp (− c8(mfn)
c2) ∀n > n0.

From Lemma 3.3 and the fact that c2 < 1/d≤1 ([5]), we get (3.8). �

We are ready to prove the upper bound in (2.3).

Lemma 3.5 (Upper bound). In the setting of Theorem 2.3, there are positive constants c12
and n0 such that

P
(

nβDQn(x, y) > µDf,β(x, y) + ε
)

≤ exp(− c12 n
c2).

for all n > n0.

Proof. Let γ⋆ ⊂ S be a continuous and rectifiable curve that starts at x and ends at y and
such that

´

γ⋆
1
fβ < Df,β(x, y) + ε/(4µ). If ε < 1, the arc length |γ⋆| is bounded above by

|γ⋆| < ℓ⋆ := Mβ
f

(

Df,β(x, y) +
1

4µ

)

. (3.11)

Let us consider a finite set of points z1, z2, . . . , zM ∈ γ⋆ sorted according to a parametrization
of γ⋆ that starts at x and ends at y, such that z1 = x, zM = y and δ < |zi+1 − zi| < 2δ.
Notice that M = M(δ) < ℓ⋆/δ. Let γ⋆

i be the part of γ⋆ that connects zi and zi+1. Then

ˆ

γ⋆

1

fβ
=

M−1
∑

i=1

ˆ

γ⋆
i

1

fβ
.

Since f−β is integrable and uniformly continuous in S ∩ B(x, a|γ|), we can choose δ > 0 such
that

(i)
M−1
∑

i=1

(

min
γ⋆
i

f

)−β

|zi − zi+1| <
ˆ

γ⋆

1

fβ
+

ε

4
,

(ii) |z − z′| < δ =⇒ |f−β(z)− f−β(z′)| < ε2 := εmβ
f/(4µℓ

⋆).

(iii) co(B(γ⋆
i , δ)) ⊂ S.

Recall here that co(B) denotes the convex hull of B. For i = 1, 2, . . . ,M − 1 consider the
set Ci = co(B(γ⋆

i , δ)). On the one hand,

DQn(x, y) ≤ DQn∩(∪M−1
i=1 Ci)(x, y) ≤

M−1
∑

i=1

DQn∩Ci
(zi, zi+1). (3.12)
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On the other hand, we have

µDf,β(x, y) + ε > µ

ˆ

γ⋆

1

fβ
+

3ε

4

> µ
M−1
∑

i=1

(

min
γ⋆
i

f

)−β

|zi+1 − zi|+
ε

2

≥ µ

M−1
∑

i=1

(

min
Ci

f

)−β

|zi+1 − zi|+
ε

2
− µMδ

mβ
f

ε2

> µ
M−1
∑

i=1

(

min
Ci

f

)−β

|zi+1 − zi|+
ε

4
.

Then,

P

(

nβDQn(x, y) ≥ µDf,β(x, y) + ε
)

≤ (3.13)

≤ P

(

M−1
∑

i=1

nβDQn∩Ci
(zi, zi+1) ≥ µ

M−1
∑

i=1

(

min
Ci

f

)−β

|zi+1 − zi|+
ε

4

)

≤
M−1
∑

i=1

P

(

nβDQn∩Ci
(zi, zi+1) ≥ µ

(

min
Ci

f

)−β

|zi+1 − zi|+
ε

4M

)

≤ M exp (− c8(mfn)
c2) for all n > n0,

by Lemma 3.2 (applied to each Ci). Notice that the constant c8 depends only on δ. This
finishes the proof of the lemma. �

Lemma 3.6 (Lower bound). In the setting of Theorem 2.3, there exist positive contants c13
and n0 such that

P
(

nβDQn(x, y) < µDf,β(x, y)− ε
)

≤ exp(− c13 n
c2),

for all n > n0.

Proof. By Lemma 3.4 we can assume S is bounded (if it is not bounded, we consider S ∩
B(x, a|γ|), with γ any path from x to y instead of S). Let γn = (q1, . . . , qkn) be the minimizing
path. For δ > 0, consider the event En = {maxj<kn |qj − qj+1| < δ}. If En occurs, there
are particles q⋆1, q

⋆
2, . . . , q

⋆
k ∈ γn ∩ Qn with δ < |q⋆i+1 − q⋆i | < 4δ for i = 0, 1, 2, . . . , k, with

q⋆0 = x, q⋆k+1 = y. We can construct this sequence inductively as follows. Denote τ0 = 0,
q⋆0 = x. For i ≥ 0, if |q⋆i − y| < 4δ, then q⋆i+1 = y and we set k = i + 1. If not, we
choose q⋆i+1 = qτi with τi+1 = min{j > τi : 2δ < |qj − q⋆i | < 3δ}. The existence of τi+1 (in
case we need to define it) is guaranteed since we are assuming that En occurs. With this
construction we have |q⋆k − q⋆k−1| = |y − q⋆k−1| > |y − q⋆k−2| − |q⋆k−1 − q⋆k−2| > 4δ − 3δ = δ and
hence δ < |q⋆i+1 − q⋆i | < 4δ for every 1 ≤ i ≤ k − 1. We will see that there exists a constant
K such that k ≤ K with overwhelming probability. This would be immediate if we assume
that the arc lengths of the minimizing paths are bounded (which is proved in Section 5),
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but this assumption is not really necessary at this point as the following argument shows.
Notice that

DQn(x, y) =

k
∑

i=0

DQn(q
⋆
i , q

⋆
i+1). (3.14)

For δ0 > 0, that will be chosen later, consider the following covering of S̄,

S̄ ⊂
⋃

v∈V
B
(

v, δ0n
−1/d

)

. (3.15)

Here V ⊂ S is chosen such that #V ≤ κ3n for some constant κ3 < ∞. Let w1, w2, . . . , wk ∈ V
be such that q⋆i ∈ B(wi, δ0n

−1/d) for every i ≤ k. For a given i ≤ k it holds

nβDQn(q
⋆
i , q

⋆
i+1) ≥ nβ(DQn(wi, wi+1)−DQn(wi, q

⋆
i )−DQn(wi+1, q

⋆
i+1))

≥ nβDQn(wi, wi+1)− 2(2δ0)
α.

If in addition δ0 < δ/4, we have

|wi − wi+1| > |q⋆i − q⋆i+1| − |wi − q⋆i | − |wi+1 − q⋆i+1| > δ − δ/4− δ/4 = δ/2.

Let ∆ = µM−β
f δ/8 and choose δ0 with 2(2δ0)

α < ∆. Then

P

(

min
i

nβDQn(q
⋆
i , q

⋆
i+1) < ∆

)

≤ P

(

∃ v1, v2 ∈ V with |v1 − v2| > δ/2 : nβDQn(v1, v2) < 2∆

)

.

Since the number of possible elections of v1 and v2 is upper bounded by (κ3n)
2, from Lemma

3.2 we conclude that

P

(

min
i

nβDQn(q
⋆
i , q

⋆
i+1) < ∆

)

< (κ3n)
2 exp(− c8(mfn)

c2).

If nβDQn(x, y) < 2µm−β
f D0(x, y) and nβDQn(q

⋆
i , q

⋆
i+1) > ∆ for every i ≤ k, then from (3.14)

we obtain k∆ < 2µm−β
f D0(x, y). Hence, for K = K(δ) := 16δ−1(Mf/mf)

βD0(x, y),

P (k > K) ≤ exp(− c8(Mfn)
c2) + (κ3n)

2 exp(− c8(mfn)
c2), (3.16)

for n large enough by (3.4).
If we choose (2δ0)

α < (ε/4K), using triangular inequality in (3.14) we get

nβDQn(x, y) ≥
k
∑

i=0

nβ(DQn(wi, wi+1)−DQn(wi, q
⋆
i )−DQn(wi+1, q

⋆
i+1))

≥
k
∑

i=0

nβ(DQn(wi, wi+1)−2(2δ0)
αn−α/d)

≥
k
∑

i=0

nβDQn(wi, wi+1)− ε/2.
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Then,

P(nβDQn(x, y) ≤ µDf,β(x, y)− ε) (3.17)

≤ P

(

∃ v1, . . . , vk ∈ V with k ≤ K and
δ

2
< |vi − vi+1| < 5δ such that

k
∑

i=0

nβDQn(vi, vi+1) ≤ µDf,β(x, y)−
ε

2
, En

)

+ P (k > K) + P (Ec
n) . (3.18)

The second term is bounded by (3.16) and Lemma 3.3 gives us an exponential bound for
the third one. Let us focus on the first one. Notice that the number of paths (v1, v2, . . . , vk)
with vi ∈ V and k ≤ K is bounded above by (κ3n)

K . Fix any one these paths and denote

Mf,i := sup
z∈B(vi,a|vivi+1|)∩S

f(z)

and consider the events

Ai =
{

DQn(vi, vi+1) = DQn∩B(vi,a|vivi+1|)(vi, vi+1)
}

Bi =
{

nβDQn∩B(vi,a|vivi+1|)(vi, vi+1) ≥ µM−β
f,i |vi − vi+1| −

ε

8K

}

∩Ai.

From Lemma 3.2 and Lemma 3.4 we get that

P(Bc
i ) ≤ exp

(

− c8m
c2
f nc2

)

+ exp (− c11 n
c2) ∀n > n0, i = 1, 2, . . . , k − 1. (3.19)

The constants c8, c11 and n0 depend on δ. Now choose δ > 0 such that for z, z′ ∈ S with
|z − z′| < 5(a + 1)δ implies |f−β(z) − f−β(z′)| < ε3 = εm2β

f /(128µD0(x, y)M
β
f ). Denote ri

the geodesic between vi and vi+1. We have,

k
∑

i=0

M−β
f,i |vi − vi+1| >

k
∑

i=0

(1− ε3)

(

min
ri

f

)−β

|vi − vi+1| >
k
∑

i=0

(

min
ri

f

)−β

|vi − vi+1| −
ε

8µ

Since the boundary of S is C1, we can control the geodesic distance by the Euclidean distance
uniformly in S̄. More precisely, for each x ∈ S there exists δx > 0 such that B(x, δx) ⊂ S
and consequently D(x, y) = |x− y| for all y ∈ B(x, δx). If x ∈ ∂S, since the boundary of S
is C1, we have D0(x, y) = |x − y| + o(|x − y|). Then, by compactness of S̄, we can choose
δ > 0 such that |vi − vi+1| > (1 − ε4)D0(vi, vi+1) with ε4 = ε3/10. If we call (r1, r2, . . . , rk)
the concatenation of the geodesics r1, r2, . . . , rk, we have

k
∑

i=0

(

min
ri

f

)−β

|vi − vi+1| >
ˆ

(r1,r2,...,rk)

1

fβ
− ε

8µ
.



14 P. GROISMAN, M. JONCKHEERE, AND F. SAPIENZA

Then,

P

(

k
∑

i=0

nβDQn(vi, vi+1) ≤ µDf,β(x, y)−
ε

2
, k ≤ K, En

)

≤ P

(

k
∑

i=0

µM−β
f,i |vi − vi+1| −

εk

8K
≤ µDf,β(x, y)−

ε

2
, k ≤ K, En,

k
⋂

i=0

Bi

)

+
k
∑

i=0

P(Bc
i )

≤ P

(

µ

ˆ

(r1,...,rk)

1

fβ
≤ µDf,β(x, y)−

ε

8
, k ≤ K, En,

k
⋂

i=0

Bi

)

+
k
∑

i=0

P(Bc
i ). (3.20)

Since
ˆ

(r1,...,rk)

1

fβ
≥ Df,β(x, y),

the first term in (3.20) is zero. Combining all these facts, we get

P

(

nβDQn(x, y) ≤ µDf,β(x, y)− ε

)

≤ P (k ≥ K) + P (Ec
n) +

∑

v1,...,vk∈V
|vi−vi+1|>δ/2

k
∑

i=0

P(Bc
i )

≤ exp(− c8(Mfn)
c2) + (κ3n)

2 exp(− c8(mfn)
c2)

+ exp(− c9 n)

+ (κ3n)
K(exp

(

− c8m
c2
f nc2

)

+ exp (− c11 n
c2))

≤ exp(− c13 n
c2),

for every n ≥ n0 if c13 and n0 are chosen adequately. This concludes the proof of the lemma
and Theorem 2.3. �

4. Manifolds

We now consider the case in which the data is supported in a (possibly lower dimensional)
manifold. We consider a manifold M that is the image of an isometric transformation
from an the closure of an open connect set of Rd. The proof is based on the fact that a d-
dimensional manifold is locally equivalent to R

d and that if in addition M is smooth enough,
then geodesic and Euclidean distances are similar.

We consider S ⊂ R
d an open connected set and a diffeomorphism φ : S̄ 7→ M := φ(S̄) ⊂

R
D, with d < D. Let Jφ(z) ∈ R

D×d be the Jacobian matrix of φ defined by

(Jφ(z))ij =
∂φi

∂zj
(z).

We assume that φ is an isometric transformation, i.e. for every z ∈ S and v,w ∈ R
D tangent

to M at φ(z) we have

(Jφ(z)v)
t (Jφ(z)w) = vtw, (4.1)
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which is equivalent to Jφ(z)
TJφ(z) = Id. Here Id is the identity matrix in R

d×d. If M is
compact, then for every ε0 > 0 there exists δ0 > 0 such that

(1− ε0)|φ−1(x)− φ−1(y)| < |x− y| < (1 + ε0)|φ−1(x)− φ−1(y)|, (4.2)

if |x− y| < δ0.
We first need to extend Lemma 3.3 to manifolds. The proof is straightforward and we

omit it.

Lemma 4.1. Assume M ⊂ R
D is a C1 d-dimensional manifold. Let Qn = {q1, . . . , qn} be

independent random points with common density f . For α > 1 and x, y ∈ M, let (q1, . . . , qkn)
be the minimizing path. Given δ > 0, there exists a positive constant c14 such that

P

(

max
i<kn

|qi − qi+1| > δ

)

≤ exp (− c14 n) . (4.3)

Proof of Theorem 2.6. Given Qn, we consider Q̃n = φ−1(Qn), x̃ = φ−1(x), ỹ = φ−1(y). The
points in Q̃n are independent, with common density g : S → R≥0 given by

g(z) = f(φ(z))
√

det (Jφ(z)tJφ(z)) = f(φ(z)).

Given ε0 > 0, let δ0 be as in (4.2). Then for every path (q1, q2, . . . , qk) in M with |qi−qi+1| <
δ0 we have

(1− ε0)
α

k−1
∑

i=1

|q̃i+1 − q̃i|α <
k−1
∑

i=1

|qi+1 − qi|α < (1 + ε0)
α

k−1
∑

i=1

|q̃i+1 − q̃i|α.

Then, on the event {nβDQ̃n
(x̃, ỹ) < 2µm−β

f D0(x, y)} we can choose ε0 small enough to
guarantee

∣

∣nβDQn(x, y)− nβDQ̃n
(x̃, ỹ)

∣

∣ <
ε

2
(4.4)

On the other hand, since φ is an isometry it holds

Df,β(x, y) = inf
γ⊂M

ˆ

γ

1

fβ
= inf

σ⊂S

ˆ

σ

1

gβ
= Dg,β(x̃, ỹ).

Finally,

P

(

∣

∣nβDQn(x, y)− µDf,β(x, y)
∣

∣ > ε

)

≤ P

(

∣

∣nβDQ̃n
(x̃, ỹ)− µDg,β(x̃, ỹ)

∣

∣ >
ε

2

)

(4.5)

+ P

(

nβDQ̃n
(x̃, ỹ) < 2µf−β

minD0(x, y)

)

. (4.6)

+ P

(

max
i<kn

|qi − qi+1| > δ0

)

. (4.7)

We bound (4.5) by means of Theorem 2.3. Lemma 3.2 is used to bound (4.6) and Lemma
4.1 to bound (4.7), which concludes the proof. �
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5. The arc length of geodesics

In this section we show a bound for the arc length of geodesics. We think this result is of
independent interest.

Proof of Proposition 2.8. Denote rn := rQn,α(x, y) and (q1, . . . , qkn) := rn the particles that
form the minimizing path. Notice that kn is the number of particles in rn. From Hölder’s
inequality we have

|rn| ≤ kn
(α−1)/αDQn(x, y)

1/α,

Then,

P(|rn| > ℓ) ≤ P

(

nβDQn(x, y)
(

knn
−1/d

)α−1
> ℓ|rn|α−1

)

≤ P

(

nβDQn(x, y)

(

kn
n1/d|rn|

)α−1

> ℓ

)

≤ P

(

nβDQn(x, y) > 2µm−β
f D0(x, y)

)

+ P

(

kn
n1/d|rn|

>
(

ℓ/2µm−β
f D0(x, y)

)1/(α−1)
)

.

(5.1)

The first term can be bounded by means of (3.4). To bound the second one we will show
the existence of positive constants c15, c16, c17, with c17 depending only on δ, such that

P

(

kn
n1/d|rn|

> c15

)

≤ c16 exp
(

− c17 n
1/d
)

. (5.2)

Then, if we take ℓ ≥ K c15
α−1, we can conclude (2.5). The proof of (5.2) is similar to the

one of Lemma 3 in [4]. Hereafter we include the adaptation of that proof to our context.
Let us consider a covering C of Rd by closed cubes C of edge size ε = ε0n

−1/d and vertices
in ε0n

−1/d
Z
d. That is, if C ∈ C, then C = z + [0, ε0n

−1/d]d for some z ∈ ε0n
−1/d

Z
d. Let

mn = #{C ∈ C : C ∩ rn 6= ∅}. We say that two cubes (cells) C and C ′ are adjacent if they
share a face and we denote that C ∼ C ′. We call (C1, . . . , Cm) a path of cells of length m if
Cj ∼ Cj+1 for every j = 1, . . . , m− 1. Let us consider the event

Em
n =

{

There exist a path (C1, . . . , Cm) with #
m
⋃

j=1

Cj ∩Qn ≥ m

2d

}

.

Given m cells C1, C2, . . . , Cm, it is clear that #
⋃m

j=1Cj ∩ Qn is stochastically bounded by

a random variable Vm ∼ Poisson(mεd0Mf). By means of Chernoff bounds we get for θ ∈ R



FPP AND DISTANCE LEARNING 17

that

P

(

#

m
⋃

j=1

Cj ∩Qn ≥ m

2d

)

≤ P

(

Vm ≥ m

2d

)

= P
(

eθVm ≥ eθ
m
2d

)

≤ exp
(

−θ
m

2d

)

E
(

eθVm
)

= exp
(

−θ
m

2d
+mεd0Mf(e

θ − 1)
)

. (5.3)

The total number of paths of cells of length m with x ∈ C1 is bounded above by (2d)m.
Then,

P(Em
n ) ≤

(

2d exp (−θ/2d) exp
(

εd0Mf(e
θ − 1)

))m
.

Choosing θ > 0 such that (2d)e−θ/2d < e−1/2 and ε0 > 0 such that eε
d
0Mf (e

θ−1) < 2, we
obtain P(Em

n ) ≤ e−m. Notice that any (particle) path from x to y must intersect at least
κ4ε

−1
0 |x− y|n1/d cells, for some geometric constant κ4 > 0 that depends on d. Let

Fn =
{

mn

2d
≤ kn

}

⊂
⋃

m≥κ4
ε0

|x−y|n1/d

Em
n .

Then,

P(Fn) ≤
∞
∑

m=⌊κ4
ε0

|x−y|n1/d⌋

P (Em
n ) ≤ e(1− e−1)−1e

−κ4
ε0

|x−y|n1/d

.

Let (C1, C2, . . . , Cmn) be the path of cells intersected by rn sorted according to rn. That is,
let (γn(t))0≤t≤|rn| be the parametrization by arc length of the polygonal through (q1, . . . , qkn)
with γn(0) = x, γn(|rn|) = y. Then the cell-path is defined by

C1 ∋ x, τ0 = 0, Cj 6= Cj−1, Cj ∋ γ(τj) with τj = inf{t > τj−1 : γ(t) /∈ Cj−1}
If F c

n occurs, then there are at least mn/3d indices i for which d divides i, i+d−1 < mn and
Cj ∩ Qn = ∅ for all j with i ≤ j < i + d. For each of these indices, there is a straight line
that passes completely through d adjacent cells Cj and consequently crosses d + 1 different
hyperplanes of the grid εZd . Using the Pigeonhole principle, we conclude that the straight
line passes through two parallel hyperplanes separated by at least ε, that is, each line segment
of rn that passes completely through d contiguous empty cells contributes at least ε to the
length |rn|. In other words, |rn| ≥ mn

3d
ε. Then

kn ≤ mn

2d
≤ 3

2ε0
n1/d|rn| in F c

n.

Choosing

c15 ≥
3

2ε0
, c16 ≥ e(1− e−1)−1 , c17 ≤

κ4δ

ε0
≤ κ4

ε0
|x− y|

we get (5.2). We conclude the proof by taking c3(δ) = min{c8(δ), c17(δ)} and from c2 <
1/d. �

We are ready to prove Corollary 2.9
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Proof of Corollary 2.9. We first need to define a topology in the space of curves contained
in S. Let S be the set of continuous and rectifiable curves in S. For γ, γ′ ∈ S define

dS(γ, γ
′) = min

h∈Pγ

g∈Pγ′

max
t∈[0,1]

|h(t)− g(t)|. (5.4)

Here Pγ = {h : [0, 1] → S, h is a parametrization of γ}. Notice that dS(γ, γ
′) < δ implies

γ ⊂ B(γ′, δ) and γ′ ⊂ B(γ, δ). For every ℓ > 0, the set {γ ∈ S : |γ| ≤ ℓ} is compact with
respect to this metric, [7, Lemma 3]. Observe also that the map γ 7→

´

γ
f−β is continuous

from S to R.
For ε4 > 0, we will see that the event dS(rn, γ

⋆) ≥ ε4 occurs finitely many times. Since γ⋆

is the unique minimizer, there exist ε5 > 0 such that
ˆ

γ⋆

1

fβ
+ ε5 < inf

dS(γ,γ⋆)≥ε4

ˆ

γ

1

fβ
.

Given ε > 0, by means of Theorem 2.3 with S = B(γ, δ) and the compactness of {|γ| < ℓ⋆}
we get the existence of δ > 0 such that for all γ with |γ| < ℓ⋆

P

(
∣

∣

∣

∣

nβDQn∩B(γ,δ)(x, y)− µ

ˆ

γ

1

fβ

∣

∣

∣

∣

> ε

)

< exp(− c18 n
c2), (5.5)

for some constant c18 > 0. Take ε = ε5/2 and δ5 such that (5.5) holds. From the compactness
of bounded sets of S we get the existence of a finite number of curves γ1, γ2, . . . , γm ∈ S\{γ :
dS(γ, γ

⋆) < ε4} such that for every γ ⊂ S continuous and rectifiable, with arc length bounded
by ℓ⋆ and such that dS(γ, γ

⋆) ≥ ε4, there exists γj with dS(γ, γ
j) < min{ε4, δ5}. Then

P

(

dS(rn, γ
i) < δ

)

≤ P

(

nβDQn(x, y) = nβDQn∩B(γi,δ5)(x, y)

)

≤ P

(

µ

ˆ

γ⋆

1

fβ
+

ε5
2

> nβDQn(x, y) = nβDQn∩B(γi,δ5)(x, y) > µ

ˆ

γi

1

fβ
− ε5

2

)

+ P

(
∣

∣

∣

∣

nβDQn∩B(γi,δ5)(x, y)− µ

ˆ

γi

1

fβ

∣

∣

∣

∣

>
ε5
2

)

+ P

(
∣

∣

∣

∣

nβDQn(x, y)− µ

ˆ

γ⋆

1

fβ

∣

∣

∣

∣

>
ε5
2

)

.

The first term is zero and the last two terms decay exponentially fast as n → ∞. By Borel-
Cantelli’s lemma, the event {rn ⊂ S\{γ : dS(γ, γ

⋆) < ε4}} occurs finitely many times with
probability one, as we wanted to prove. �

6. Restriction to k nearest neighbors

In this section we prove that if we restrict ourselves to paths composed by k nearest
neighbors, the sample Fermat distance remains unchanged with high probability when k ≈
log n. This reduces the computational cost from O(n3) to O(n2 log2 n).
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Proof of Proposition 2.11. Recall that Given k ≥ 1 and q ∈ Qn, we denote the k-th nearest
neighbor of q by q(k) and we denote Nk(z) = {q(1), q(2), . . . , q(k)} the set of k-nearest neighbors
of q.

Given two points z1, z2 ∈ S we define

Aα
z1,z2 = {z ∈ S : |z1 − z|α + |z2 − z|α < |z2 − z1|α} .

There exists a constant δ > 0, that depends only on α such that B((z1 + z2)/2, δ|z1z2|) ⊂
Aα

z1,z2
. Let q1, q2, . . . , qkn be the optimal path and define

k⋆ = min {k ∈ N : qi+1 ∈ Nk(qi) for all i < kn} . (6.1)

We need to prove
P(k⋆ > c4 log(n/ε) + c5) < ε.

Notice that for every 1 ≤ i ≤ kn, A
α
qi,qi+1

∩Qn = ∅ since if it is nonempty we can construct
a path with lower cost than the minimizing path. For k ∈ N, define the random variable

sk = sup
{

s : there exists a ball Bs with radius s that contains at least k

particles and another ball Bδs ⊂ Bs with radius δs and Bδs ∩Qn = ∅
}

,

and Ak = {sk > 0}. Here we use the convention sup ∅ = 0. Since qi+1 = (qi)
(k) implies Ak,

we have
{

k⋆ ≥ k
}

⊂
∞
⋃

j=k

Aj . (6.2)

Define

s =
1

3

(

k

2Mfn

)1/d

, s̄ = 2
√
d

(

2k

mfn

)1/d

, (6.3)

Clearly s < s̄ and

P(Ak) = P(0 < sk < s) + P(sk > s̄) + P(sk ∈ [s, s̄]). (6.4)

We proceed to bound each term in (6.4).

P(0 < sk < s) ≤ P (∃ a ball Bs ⊂ S with radius s with at least k particles)

≤ P (∃ a cube C2s ⊂ S of edge size 2s with at least k particles) .

Consider the family C of cubes C ⊂ R
d with edge size 3s and vertices in sZ

d. Notice that the
number of elements in CS = {C ∩ S : C ∈ C} is bounded above by κ1

Sn/k, for some constant
κ1
S that depends on the diameter of S. On the other hand, any cube with edge size 2s is

strictly contained in a cube C ∈ C. The number of particles in C ∩ S is a Poisson random
variable with parameter bounded above by 3dsdMfn = k/2. Then,

P(0 < sk < s) ≤ κ1
S

n

k
e−θ1k, (6.5)

for some positive constant θ1. Next,

P (sk > s̄) ≤ P (∃ a ball Bs̄ ⊂ S with radius s̄ with k particles)

≤ P

(

∃ a cube C
s̄/
√
d ⊂ S with edge size s̄/

√
d with at most k particles

)

.
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Now we consider the family C′ of cubes C ⊂ R
d with edge size s̄/(2

√
d) and vertices in

(̄s/(2
√
d))Zd. The number of elements in C′

S = {C ∈ C′ : C ⊂ S} is bounded above by κ2
Sn/k.

If there is a cube C
s̄/
√
d with at most k particles, then there is C ∈ C ′

S with at most k particles.

The number of particles in C is Poisson with parameter at least s̄dmfn/(2
ddd/2) = 2k. Then

P(sk > s̄) ≤ κ2
S

n

k
e−θ2k, (6.6)

for some positive constant θ2. Finally

P (δs ≤ sk ≤ s̄) ≤ P (∃ ball Bδs ⊂ S with radius δs and Bδs ∩Qn = ∅)
≤ P

(

∃ cube Cδs/
√
d ⊂ S with edge size δs/

√
d and Cδs/

√
d ∩Qn = ∅

)

.

We proceed as before but now with the grid (δs/2
√
d)Zd. There is at most κ3

Sn/k cubes with
vertices in the grid and nonempty intersection with S, the number of particles in a cube is
Poisson with intensity no greater than s

dMfn/(2
ddd/2) = k/(2d+13ddd/2). Then,

P (s ≤ sk ≤ s̄) ≤ κ3
S

n

k
e−θ3k, (6.7)

with θ3 = (2d+13ddd/2)−1. We conclude that

P(Ak) ≤ κS
n

k
e−θk, (6.8)

for θ = min{θ1, θ2, θ3} and κS = κ1
S + κ2

S + κ3
S. By (6.2) we get

P (k⋆ ≥ k) ≤
∞
∑

j=k

κS
n

j
e−θj ≤ κS

n

k
(1− e−θ)−1e−θk < κSn(1− e−θ)−1e−θk. (6.9)

So, we can guarantee P (k⋆ ≥ k) < ε if

k>
1

θ
log

(

κS

1− e−θ

n

ε

)

.

This concludes the proof. �
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