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ABSTRACT

Many branches of science and engineering require differential equations
to model the dynamics of the systems under study. Traditionally, the iden-
tification of the appropriate terms in the equation has been done by experts.
[2], [1] developed a method to automate this task using the data itself. In
this work, we extend the applicability of this method to situations where not

all variables are observed by adding higher-order derivatives to the model
space search. We test the approach with known chaotic dynamical systems
like the Rosseler-1974 and show that by including higher order time deriva-
tives it is possible to obtain a differential equation which generates phase
diagrams with a geometry equivalent to the original series.

INTRODUCTION

Problem setting: given empirical data drawn from a dynamical system,
represented by functions f1(x, y, z, t) . . . fH(x, y, z, t), our objective is to find
a set of differential equations (1) that explains the relationship between the
measurements, even though some of the functions may be unobserved.

Df = U(f ,Ef), (1)

where f = (f1, . . . , fH), D,E are differential operators in space and time
(x, y, z, t) variables and U : RH → RH is an unknown map.
Proposal: when not all the variables can be measured, we propose to en-
hance the approach outlined by [1] and [2] by including higher order deriva-
tives to account for the missing information.

Method: choose a large dictionary of functions (polynomial powers of fh
and its derivatives up to n− 1, h = 1, . . . ,H , spatial derivatives of f1 . . . , fH
and trigonometric functions of t, and so on)
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Since we look for sparse representations, the Lasso [3] regression tech-
nique is used to find the combination of the elements of the dictionary of
functions that adequately explains the behaviour of the response variables.
That is, for all h such that fh is observable,
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(2)
where c∗h = (ch,1, . . . , ch,p) are the regression coefficients.

DEALING WITH UNOBSERVED DATA
The proposed approach leads, in many cases, to equivalent systems that capture most of the underlying dynamics In the plots below phase diagrams

and time series of the true dynamics (blue) and the integrated dynamics (green) of the differential equations found are shown for the variables x and y of
the Rosseler system,
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The equations found using only one variable in each case, though having many terms, are able to reproduce the geometry of the trajectories in the phase
diagram.
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